§ ¥

1

HADC-TR-55-186, Vol Il
Firal Report

%, £
&
4" bf&ﬂ.owt‘ﬁ
ANTENNA LOBE SUPPRESSION

Volume 1l - The E-Plone Radiation Pattern of an Antenno
Mode! for Horn Antennas

J.S. Yu
R. €. Ruddurk

TECHNICAL REPORT NO. RADC-TR- 65-18%
Cciober 1965

CLEARINEHOUSE
FOR FEDERAL SCIENTIFKMAND
| TECHNMICAL INFCRMATION

m"?!Tﬂcm iehs f‘"“"‘"}"" - x

8;5;9,;9 35 7&54 /ms

i
f H -
b{..,& i&i_-ixrij g

T petmd

ol

Vulnerebility Reductian Brenchﬁi{“ﬁ"w*-
Rome Air Development Center a
Research and Technology Divisiun

Air Force Systems Commend
Griffiss Air Force Bosz, New York




—

When US Gevernment drawings, specifications, or other data are used for any purmpose
other than a definitely related government procurement operation, the government therchy
incurs no responsibility nor any obligation whatsoever; and the fact that the government
may have formulated, furnished, or in any way supplicd the said drawings. specifications,
or other data is r ¢ to be regnrcied by implication or otherwise. as in any manner licensing
the holder or any other rerson or corporation, or conveying any righte or pemission 1o
manufacture, use, or sell any patented invention that may in any way be related thereto

Do not return this copy. Retsin or desiroy.




" .
AR e T g g

o g g,

IR e

ANTENNA LLOBE SUPPRESSIOGN
Yolume il - The E-Plane Radiation Pattern of an Antenna

Model for Horn Antennas

J.S. Yu
R. C. Rudduck

AFiC, GAFB, R.Y.. X Got £3-158




ABSTRACT

Diffraction theory is used in analyzing the radiation characteristics
of typical horn antennas., The far-side-lobs and back-lobe radiation has
been solved without employing equivalence prirciples which are impractical
in the problem.

A corner reflector with 2 magnetic line source located at the vertex
is proposed as a model for the E-plane radiation of horr antennas. Dif-
fraction theory is applied to formulate the radiation pattern of this antenna
model. A complete pattern, including multiple interactions and images
of induced line sources, is obtained in infinite series form. Diffraction
mechanisms are used for appropriate approximations in the computations.
Emphasis i8 made on the continuity of the radiation patterns, The com-
puted patterns are in excellent agreement with measured patterns of
typical horn antennas. Radiation intensity of the back-lobe relative to
main- lobe intensity is obtained as back-to-front ratio and plotted as a
function of antenna dimensions, A set of measured back-to-front ratios
is presented to demonstrate the validity of computation,
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THE E-PLANE RADIATION PATTERN OF AN
ANTENNA MODEL FOR HORN ANTENNAS

L INTRODUCTION

Electromagnetic horns are widely used either zs feads or direct
radiators in antenna systems, Therefore, a complete and practical
understanding of the radiation mechanisms is important. The purpose
here is to provide this understanding by using diffraction theory as a
tool for analyzing radiation characteristics of horn antennas,

Experimentally radiation patterns of different horn lengths and
flare angles in both E- and H-planes have been measured by Rhodes{1],
These patterns are adequate only in the vicinity of the main lobe. For
the regions of the far side-lobes and back lobes, which ars important
in EMC (Electromagnetic Compatibility} problema, mcre accurate
measuremants are required,

Analytically, the descriptions of the propagating modes in a horn
are summarized by Kraus{2]. In general, apexture techniques must
be used to calculate the radiation pattern, and it is assumed that the
aperture distribution is that of the ircident wave and is zero outside
the aperture. The patterns thus obtained give satisfactory main lobes
and near side-lobes, As for far side-lobes and back lobes, Scheikonoff's
equivalence principles ccild be 2pplied if current distributions on the
outer surtaces were known. For a horn antenna, extreme difficulty is
involved in accurately describing the current distributions. Furthermore,
difficulty would arise in evaluating the consequent surface integrals. The
impracticality of the equivalence principleaz leaves radiation problems of
the far side-lobes and back lobes still unsolved.

Because of the increasing power levels of individual antennas and
the increasing numbers of radiating systems in particular areas, the
characteristics of far side-lobes and back lobes have become increasingly
important in EMC problems, Since these radiation characteristics are
caused by diffraction of electromagnetic waves, it has been a natural
consequence in recent years to apply diffraction theory to the radiation
problems of horn antennas,
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In 1962, Kinber [3] derived horn patterns and the coefficient of
coupling batwaan twa adiscont horns by diffraciion theory., Exampics are
given for both E-plane and H-plane patterns, in which discontinuities are
peinted cut, and emphasis has niot been made on side and back lobes. In
1963 Ohba[4] used diffraction theory to compute the radiation pattern
in the H-plane of a corner reflector. Disagreement was noted as a re-
sult of neglecting contributions from the other edges of the corner re-
flector. In 1964, Russo, Rudduck, and Peters[5] employed diffraction
theory with proper assumptions to obtain E-plane patterns of a thin-
edged and a thick-edged horn, Only the first-order diffraction terms
were usad to compute the thin-edged horn pattemas. The results, with
possible discontinuities left in the side and back lobes, are in good
agreement with the measured pattern, Even though the higher-order
diffraction tarms and the reflections inside the horn are neglacted, the
combination of the ernployed concepts and assumptions constitutes a
naw method of analysis for horn antennas, We shall follow this new
method to develop a more complete anaiysis by including the previously
neglected higher-order diffractions and the reflections inside the horn
antenna.

Aot o

II. RADIATION MECHANISMS

The proposec antenna model is a corner reflector formed by two
perfectly conducting plane walls intersecting at an angle, ZGE. as shown
in Fig. {. If we let the corner reflector be infinite in extent along the
z-direction, the problem is thus reduced to a two-dimensional cne. The
primary source is a magnetic iine current assurned at the vertex S.

This assumption considerably simplifies treatment in the principal E-
plane of a horn antenna fed by a waveguide supporting the TE;y mode,

The ang=:lar coordinate, 6 shown in Fig. 1, is the commcn refer-
ence angle. Thy angles § are the diffraction angles referred to sach
individual wadge at which diffraction occurs. The angles G are called
incident angles of illumination, All the first subscripts refer to the
poinis at which diffraction occurs, while the second subscripts refer
to the points of origin of incident rays. This notation will be used through-
out the following discussions., There ars four wedges (A, B, S, and W) to
be treated by diffraction theory. Wedges A and B have serc wedge angle,
while wedges S and W have wedge angles of 28p and 2(v-6 ), respectively,
The property of symmetry of the reflector will be used to simplify the
problem by considering only the upper half of the pattern.

In diffraction theory, a uniform cylindrical wave {s radiated from
the primary source in the region -8,< 6€ 8  This uniform cylindrical
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Fig, 1, Corner reflector,

wave is called the geometrical optics wave which illuminates wedges

A and B, The diffractions at A and B caused by this illumination are
called the first-order diffractions which have the solutions shown in
Eq. {32) (Appendix A). The solutions are directicnal cylindrical waves
radiated from the wedges., The geometrical optics rays from S and the
first-crder diffracted rays from A and B are shown in Fig, 2a. The
first-order radiation pattern in the far-field can now be obtained by
supe rpocition of the far-field intensities of the primary source and tne
two induced sources.

To conaider the diffraction procesa further, one can observe from
Fig. 2b that the induced source at B illurninates wedges A, S, and W to
give three second-order diffraction terms, In the same manner, the
first-order-induced source at A illuminates wedges B, S, and W to give
three more second-order diffracted waves., These six second-order-
induced sources will continue to give third- and higher-order diffraction.
The induced intensity becomes smaller with {ncreasing order, and the
phase delay of successive illumination can be properly taken into account.
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Fig. 2. Radiation mechanism of the antenna model. a) Direct rays
and the lst-order diffracted rays due to illumination from
primary source at S; b) The 2nd-order diffactions due to
the lst-order illumination {rom B; c) The first image in the
lower wall due to the lst-order diffraction at A; and 4) The
2nd-order diffraction due to the first image in the lower wall.

Since the reflector has perfectly conducting walls, the diffracted
waves from A and B are reflected by the walls, The first-order diffracted
rays from A are partially reflected by the lower wall, as shown in Fig.
2¢c, The refiected rays can be described by the image method of Appendix
B. Figure 2d shows that wedge A is illuminated by one of the first-order
images from the lower wall, The number of irnages s determined by the
flare angle of the reflector. The effects of the reflector wallsz can then be
taken into account by the images and the subseguent diffraction of the images.

When the process of diffraction and reflection described above is
cempleted, the far-field patterns of th- reflector antenna can be obtained
by superimposing the contributions from the primary svurce at S; the
induced sources at A, B, S, and W; and the images in both falls, Form-
ulaticn of the pattern, including all crders of diffraction and reflection,
is cbtained in the next section, .
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1il. FORMULATION OF SOLUTION IN
INFINITE SERIES FORM

Diffraction theory is briefly treated in Appendix A for both plane-
wave and uniform cylindrical-wave illuminations. The wedges of the
corner reflector studied here are all illuminated by cylindrical waves,

In Appendix B, a method of images is presented to describe the image-
waves formed inside the antenna., The diffraction thezory and the method
of images are used in the following to formulate a solution for our problem.

First, referring to Figs. 1 and 2z, the geometrical optics wave
ridiated from the primary source S is a unitorm cylindriczl-wave,
defined as

(1) v¥ey =1 -8< 0< + 8.,

where v* ha5 point S as phase-reference, and outside the defined region
v¥ is identically zero, The cylindrical-wave propagation factor R-Z
Exp. {~j«R) to the far-field is suppressed in Eq. (11) because only the
angular dependence is of interest,

Wedges A and B are illuminated by the cylindrical wave from S
with zero incident-angle, Since there is no reflection term, tne dif-
fracted waves from A and B have only one term of the sclutions given
by Eq. {32). Excluding the portion cof waves diffracted into the corner
reflector, the waves directly diffracted to the far-field can be written
as

(1} T o_ ..
@) Dps® vBlpy T-05 +0,2) -F<agntog

(1)

3 4
DBS =VB(PE:“-QE-8.Z) 3 Zez“(“*'eg),

Pas =g =05 +6,

@BS:‘;’BS=1T“‘8E - as
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{2} g = SA = SB, and
{cont)
na =ng = 2,

where Dag and Dgg designate diffraction at A and B because of illumi-
nation from 8. The superscript (1) means first-order diffraction. The
expressions of ¢'s in terms of 6 can be obtained from Fig. 1. The
argument n is equal to 2 for both A and B hecause they have zero wedge
angle, It should be noted that the notation vp follows the form of the
original solution and the subscript B has no connection with the wedge B.

The first-order radiation patterns, neglecting the reflections in-
side the corner reflector, can now be obtained by simpbr superimposing
the terms in Eqs, {1) and (2}, The dixgcontinuiﬁes inV atb=t6gin
Eq. (1) are eliminated by D Ag snd DL A, respectively, in the manner
illustrated in Eq, (34). Although the pattern is made continuous at
6 = 16g, two sets of new discontinuities at 6= /2 and t{(r +6g) are
observed in Eq, {2). Therefore, the first-order pattern in general has
discontinuities at these directions.

Let us next examine the reflections of the first-order rays dif-
fracted into the reflector. Since the diffracted waves from A and B are
symmetrical with respect to €= 0, as can be seen from Eq. (2}, the
image-waves from the reflector can be treated as in Appendix B, The
images are fors'ned symmetrically in the lower and upper walls, Re-
placing U of Dﬁs and Dgs} in Eq. {2) by {-218g - ©) and (2i8 - 6), respec-
tively, the image-waves from two walls can be obtained similar to Eq,
{44) as

ki

() - . LS 6 -
{3} (IL)’i = VB(pE,w ~{21+1)6-8, 2), 3 -(1+1)8E£6f_ 3 qSE ;

1
(I(Q);{ = vg(PE, T -(21+1)8g + 0, 2), -[%-(HI)BE}Z 9> - B—- iez} ;

1=21,2,3 cmccena h; and

h {the largest integer)< E%é’
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where the subscripts L and U indicate that the image terms 2rz {rum
the lower and the upper walls, respectively. The number of images in
each wall is equal to h, as discussed in Appendix B, The division of
regions is also studied in Appendix B. When the ratio ﬂ/ZGEis not an
integer, the valid region for the last images should be modified to

i

14) % -(h+1)}8g < 8< 7 -(Zhtl)0p for the lower-wazll,

O g it

and

PR

fx

U R A
- LE -in-i-ijUEJ >0> . fn -(Zhi-l)BE} for the upper-wall .

Each term in Eq. (3) has its properly defined regions and is set zero
outside the region. The first image in the lower wall, caused by the
tirst-order-diffracted rays from A, is shown in Fig, 2c, Figure 3 shows
the images in the lower wall for h = 4. It is noted that the true image
waves of the diffracted wavee from A are those with i »dd in the lower
wail and i even in the upper wall.

Descriptions of the first-order diffracted waves from A and B and
their reflected waves have been completed above. The higher-order
terms to be treated in the following discussion are necessary for cases
in which small dimensicns are encountered or high accuracy is desired.
Physically, the higher-crder terms describe the effects of illumination
of edges by the lower-order-induced sources and their images. Matha-
matically, they are required tc overcome the discontinuities of the
lower-order terms in the radiaticn pattern. Taking the two first-order
diffraction tezms in Eq. {2}, for instance, the discontinuities mentioned
earlier can only be eliminated by taking into account the second-order
diffraction ¢ i the specified directions.

At 9=a/2 in Eq. {2), wedge A is illuminated by the first-order-
induced source at B. This intensity c¢f illumination from B to A is
called the first-order coupling coefficient,

0w [ w)
CAB"DBS("E) ’

as shown in Fig. 2b. Because of symmetry, the first-order < upling
coefficient from A to B in the directior 8= -w/2 is equal to CaR, There-
fore, using Eq., (2), we have
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Fig. 3. Four lmages in the lower-wall,

(y _ . -
{5) CA.B = CBA = B(PE, 3" aEt 2},

Similarly, wedge W is illuminated by both A and B at 6= i{n +6p),
respectively, The coupling coeificients can be obtained in the same

manner as

1 (1)
{6) c;,)A = Cwp = Vplpg, 27, 2) .

sities shown in Eqs. (5) and (5}, Under this assumption, the second-
order diffracted waves can be obtained ag
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. {2) i 1 T, 3w 7 ::
{7} DAB = C;}B {VB(ba 'i""eo 2} + VB(b, 7 “ZaE'Gas Z)Jo
S ALAL AL

(2) 1 3
DBA = C(BiL [VB(b!%‘e: 2) + VB(b:"ZE' -29E~Ba Z)jll 3

T>0> - (w+0g);

1
wa = CWA [vpleg, -9+ 8nyl, 85 <6< 2v- 6 ; and

D‘»:T)B = C(x:')s [vglpE: 27 - 6p-6ny)l, -6 20> -(2r-8g),

where the argurnents used can be obtained from Fig. 1 as

r

T - - "
(8) ¢AB =¢AB+QAB-(::-BE+6)¥(E..8E),

* = 5 (X
oBAzq,BA;GBA—(w-BEQ)*'(Z )

bwa =tbywa = 8- Og,

¢ :‘:Z"'e-eg

waB -~ Yws (>

2@
n =Zn...,.§,
w "

where ny is obtained from wedge angle, {2-nw)r, of wedge W. Next,
we note in Eq. {3) that the image waves are discontinuous at angles

e=i~(§ -18g), i=1,2,3- - (-1},
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Figure 3 shows the geometry
The coupling coefficients

at which the wedges A and B are iliu
of lower and upper walls, respectively,

of the images with h=4 in the lower wall,
from the imag~s to wedge A can be ottained from Egs. (3) as

o iR e

S R =
Cﬁ,}zlg) (0=2-i8g), i= 1,2

By symmetry, the coupling coefficients from the images in the upper

wall to wedge B are equal to Cii{ as

) xz = Cgi VB(pE’ 5 - (i+1)8G, 2), i=1, 2, - - (h-1),

The second-oxder diffraction at A and B illuminated b, the images can

now be written as

3
D(‘? - C(l) [ vglpy 7 +16E+9 2) + vB(p -y (1+Z)9 +9 Z)J ’

(i0)
k4
-5 £9< w46,

2 3 LAY
pf) . g; {"B‘ po 2H10-8,2) + v (pi. T (42)85-6, z% ,

1 il ('+9E)’
2 -

and

i=1123 "'"’(h'l)»

where the arguments can be obtained by using Fig. 3 with h = 4 as reference.

S 3 - -
(11) $..=¢ +a -(:-BE+9)+(2 -(ﬁ-l)eE),

i o - L]
b = a_ ={x-0_-8F (X _(is+1}0
*Bi¥pstBi VT E A% (3 - e,

R —




(11) P; = Pi-1 cos B+ p, cos ilL, and
{cont)

i= 1,2, - T (h'l)o

The second-order diffraction terms obtained in Eq. {i0)are appropriately
arranged for each boundary of the defined regions in Eq. {(3), except

that the last boundary is given by 8=+ (n/2 -(h+1)65) if 7/28 is an inte-
ger, or 8= ¢ (w-(2h+1)6E) if w/20F is not an integer. The boundavies

in either case correspond to the directions in which wedge S is iliuminated
by the induced sources at A and B. Therefore, the coupling coefficients
from A and B to S can be obtained from Eq. {3) by symmetry as

(12) ) = cb) = vatep 020,

which gives rise to the second-order diffraction at wedge S as

(13) {) = &) [vgleg, 9p-8 ng)]

_9E< 8< +8E
(@) _ ~(1) ., 8 - =
Dg =c§l vplpp 09 )]

@SA=6E-6,

éSB = 8E+ 8, and

Now, we have completed the descriptions of all second-order
diffractions which physically take into account the effects of illumination
by the first-order-induced sources and mathematically eliminate all the
first-order discontinuities. Summing up the second-order diffraction
at A,B. W, and 8 gives

h-1
a0 oPeofhe y ol . -Zseserem
i=1

it
A




R B

(14) i =p® + Y PV, I >6>_(r+0g;
cont. = bl L. e =

(a)

- (3) n{i) .

Dy = Dwa * Dyp , O 202 -6
{2) . pla) 2

Dy’ = Dgy + D}, -8 206,

where ©igs. {7), (10}, and (13) can be used for computation, Following
the samie procedure used to obtain Eq, (3), the second-order image
waves {rom the lower and upper walls can be obtained as

4 3 l K [] 3” jo
{i5) (12’)1 = quia &B(b. 2 -2i85-6,2) + vaib, -3 -2(z+1)0E-9, 2)]

h-1
) C,ulvalpes To18-8 2) + viloy, S -(3142)85-6, 2)
Ak B Pk’ Z- eE t ] B pk’ 2 BE' (] *

k=1
T (i+l)B <0< T - i8.;
3 L85 -1

(3).. 1) in ;
(Iyh= c§3~ {VB(b, %-Ziﬁ J+6. 2) + vB(b.'T -2(i+1)BE+8, 2)

A £
h-1l
| T .i0g6,2) + o +6,2
+ CBk.VB(Pk’ E"‘BE s VB(Pk’ —z--{3i+2)9E , 2}
L
x=1

and

i=i{2,3---h,

I




where the 6 of ng) and DI in Eq. {14} have been replaced by ($2i6g-9),
respectively, Note that the boundary of the last image i=h should follow
Eq. {4), if n/20g is not exactly an integer,

We have observed above that while the first-order discontinuities
are eliminated by the inclusion of second-order diffractions, new dis-
continuities occur again at the boundaries of the regions defined in Eqs.
(14) and {(15). These second-order discontinuities can he eliminated only
by introducing third-order diffraction. The higher the corder of diffrac~
tion the smaller will be the magnitude of discontinuities, It is theoretically
possible to consider the order of diffraction as high as deaired, In
other words, magnitude of discontinuities can be made negligibly small
if sufficient order of diffraction is included,

For completeness, let us consider higher-order diffraction, The
third-order diffraction at wedge A is caused not only by illuminations from
the second-order-induced sources at B and the images in the lower wall,
but also by {llumination from wedges W and S, In the same manner as
Eq. {14), the resultant third-order diffraction at A can be obtained as

h-1

(s} _ (3) {3)

DY - nl3) {3) 3 3},

A DAB + DAW * DAS * 2 DAi
i=l

Similarly, by including all the (m-l)th-order—induced sources and images,
the mt*P.order diffraction at wedges A, B, W, and S and the images of the
corner reflector can be summarized as

h-1
(m) _ _(m) {m) {(m) (m}
(16) D, -DAB+DAW+DAS+§DA1 ,
i=
h-1
(m} _ D(m) {m) {m) + 5‘ D(m)
Dg =Dp, +Dgw+Dpg + ) Dy »
i=1
{(m) (m) (m}
DW = DWA + DWB ’
(m) (m) {(m]
S DSA SB ?

4
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(16) (( })1 = (m)(&: 216, -8) and

cont.

(U ))1 = Dgn)

R v

(0=4216-6) ,

[

where the valid regions are identical to those defined in Eqs. (14) and
{15}, The components in Eq. {16) can be obtained analogous to Egs.

(7}, {10), and (13) as follows (the equal sign following 8 in the parentheses
means ''replaced by''):

(m)
amn DaB = Cog " [vplb. 48, 2) +vpb, 226540, 2)],

_-;-5_ 8< w+0;

{m)
DA = Dx;) (6=-9 .

Nia

>8> ~(n+6g) ;

(m) ) .
Dwa = Cyp Lvplep -Ogto mpl, Op< 02 2wt

pim . (m-1)
Dyn =Cya [vglpgr 27-8,.0 an -6 > 8> -(2w-6.) ;
(m)  (m-1) 6 ne)]
DSA = CSA [VB(FE’ BEQ s nS)
-GE < 6<
(m) (m) -

DSB = SA (6"8) »

{m) {m-1} .. In
DAi = CAi }‘B(Pi: '2'+1BE+Ga 2)+ VB(Pi’ -'é-"(i"'z)eE*'e: 2}],

Dl = plm) (6=-9, >0 - (r+0g) ;
(m) c{m-l) {VB{PE’ o+ GE-B, Z)}, -—g-ﬁ Bﬁ '+6E ;
Dy = (m) w (0=-9 7202 - (r+8g);

4




(m) {m-1)

Y h: 3
{17) Das =C,» valog. m - 840, 2y}, - 3¢ 0< w46 ; )
cont. -
and i
(m) _ J{m) g, Tao> —(v+
Dpg = D,g (6=-6), 5282 (w46},

where the property of symimatry with respect to 8= 0 ie used to obtain
symmetrical terms. The courling coefficients of different orders are
obtained in Appendix C. As soon as ccupling coefficients are properly

evaluated, the diffraction of any order can then be obtained by making
use of Eqe. {(16) and (17},

Finally, the total far-field pattern of the corner reflector can now
be obtained by superposition of all terms presented above. Taking
wedge A as a common phase reference. and considering only the upper-

half region, 0< 9< m, the total far-field u(8) can be written in a form
similar to Eq. {46) as

» '} o o
{m); {m) (m)
(18; u(®) = Iv* + ZDS JYA5+ S DE + Z D;n YaB
l. m=2 m=} m=l

o h oe
+L§ Di,ffl)] YAW+Z Z (I(;n))i Y ai

=2z J i=l Lm=l

< (m)
*{z Iy ’h} YBh YAB,
m=1

where the last images in the upper wall arc included bechuse in general
they may contribute to the upper-half region. The local phase factors
referred to A can be written from Figs. | and3 as

(19) Yas = Exp. [-j27pg cos(-8p 48],

Yap = Exp. |-j2nb sin 6],

o itd sty gl




Yaw = Exp. {-j27pg cos (8g-9)] = yas
Yai = Exp. {-j2mp: sin (i85 +9)],

and

Yph = Exp. [-jZ‘n'p;L sin (haﬁ:*e)] .

IV. THE APPROXIMATED SOLUTIONS

The pattern of the corner reflector in Fig. 1 can be cal :ulatad
by Egs. {18) and (19) as accuratcly as deaired., Since the contributicons
of the higher-order terms to the pattern decrease with increasing order,
computation can be made by including only those termis which are signi-
ficant in their defined regions., The following approxirnations are made
to obtain a pattern including only significant higher-order terms,

First, referring to F’ig. Za, the contributions from wedge S are
the geometrical optics texr ‘j of Eq. (1) due to the primary source,
and the Jdiffracted terms DE due to the induced sources. The lowest-
order diffracted terma are due to the second-order-induced sources.
Thersfore, the most significant contribution from the diffracted terms

a( 3/ given in Eq. (14). Computation of the illumination inte (x;ity,

Cs A, indicates that for typical dimensions the magnitude of Dg

generally very small compared to the unit intensity of v, Neglecting
the diffracted terms, the contribution from wedge S may be approximated
as

(20) v ? (m) 1, 0< 8< B

where the region of contribution is defined as such because only the
upper-half region 0 < 8< 7 {s under consideration.

Next, consider the corrvibutions from the induced sources at A,
The third- and higher-order :¢cms of a typical reflector are also
generally very small compared to unity. Therefore, the diffracted fields
from A can be approx{matcd by considering only D&g and D}t’ in Egs. {2)
and (14), respectively. The diffracted fields from B can be approximated >
in the same manner, We thus have
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h_

(z1) > D ol + pifh + ) i), p<e<m,
1:::1
and
"
o
, 0< g< 7
{rr) — e B
mal = ~{mibg) <8< w

The lowest- order contnbutions from the induced sources at wedges
W and S are D(;, and D hlch are also very small compared to the unit
intensity of v'. Smce B( is defined in the same region as v , }ie con-
tribution from D )to the total attern can be neglected. But, D
defined outside the region of v ; therefore, in order to accurat ‘Yy cal-
culate the side and back radiations in the pattern, we must at least
approximate the contribution from W as

= m)
@) ) Dy ~n@, +nl 6 <8< .
m=2

As for contributivns from the image terms, the magnitude, in
general, decreases with increasing value of i. In other words, in the
region of contribution, 0< €< w/2 - 6, shown in Fig. 3, the images
contribute to the total pattern more significantly in the upper end than
in the lower end of the region. Therefore, in theory, approximation on
the images should be made individually., But, we shall approximate
images of the same order as a group so that all the images of the same
order can be completely included. Assuming that the second- and highex-

order images have negligitle contribution to the tntal pattern, the image
termas are approximated as

%

T {m) H L
(23) 2 (i;n ) &(IQ){ , 5 - (i+1)85 < 8< 5 - i6p .

msi
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An approximate pattern of the corner reflector can now be ob-
tained from Eg. (18} by using Eqgs. (19} to {23}, as follows:

h-1
.« 5 (l) {2} 2
124) u{f) = JYAS T {D AB + § D}(“)]
h-1
; (2) . K2 (3}
*[DBS,DBA'*' §D ]"'AB
i=}

(D wa T Pws- Yaw

+ [(I

1
)i vay U )h]ysh YAB °

Since this is an approximated pattern, discontinuities are expected to
be ircreasingly noticeable with ducreasing size of the corner reflecter.
Let us exarnine, term by term, the continuity of Eg. (24) in the upper-
half region, O S 8< n. At 6= 6, the discontinuity of v in Eq. (20) is
eliminated by pl). Acre= n/2, the discontinuity of phé in Eq. (21) is

eliminated by D' ; but therz are no higher-order terms mi: uded in

Eq. {24) te compensate for the discontinuities of DBA and D it with

: - fed ] 3 - ( r
=1,2,- - {(k-1). 3imilarly, at 9= (1r+BE}, the dxscontmutty of DBS

is eliminated by DW}B’ but those of DBA and D(:), withi= 1,2, -~ {(h-1},

are left uncompensated. The discontinuities fh 8=n/2 - 8 of l‘i(i))i

are all gliminatea by Dﬁ? and Dg) , withi=1,2,-- -{n-1), The dis-
continuity of (I( K }h takes place in the defined regions of v* and is usually
unnoticeably small. The discontinuities of D( 2) and D%V)B at 8= OE are

also unnoticeably small for a typical corner reﬂector.
Within the accuracy of the approximations made to obtain Eq. (24),

it ig desirable to have the pattern continuous in the entire region. To
accomplish this, the second-order discontinuities at = 7/2 and -{w+6p)

18
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mentioned above need to be eliminated. The coupling coefficients from

B to A resulting from the second-order-induced sources at B can be
obtained from Eq. (14) as

(25) chh =l =1,

1
= C(Biﬁ [VB(b, 0,2} + vB(b’ T- 292. 2)]

h-1

N A
+ 2 CB VB Py i8 e 2} + VB(pi, - {i+2)6E, )},

= ) 5 e
=CaB Capat / CaiCasi-

e
)
Pt

where Eqs. {9) and (10} are used and property of symmetry is employed
for the first-order coupling coefficients. By symmetry, the second-

crder coupling coefficient from A to B can also be cbtained from Egs.
(14),(7), and (10) as

C(‘) = (2) (9—-—) (23‘

Because of the interaction between A and B by CX) , a third-order dif-

fraction can be written for A and B with the same defined region in Eq.
(14). If the process of interaction between A and B continues to infinite
order, a coupling cozfficient can be obtained in clesed form as

ot ‘%1

- 1-1

l
) Cani
(26)

C AB ~ +
ABA

1-¢C

T L I PRI E|
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where CanA and CApi can be obtained from Eg. (25}). The continuity
of the total pattern at 6= w/2 is now ensured by using CaB instead of

{1} z) (z) .
CAB for DEXB and DBA in Eq. (24) as

b

(27) DAB—CAB{VB(b = +86, z)+vB(b——-z +9,2)], 0<8% ¥,

and

" 3n J’ 059‘%
Dpa = Cap {VB(b. 5 -6, 2} + vy(b, Y -265-8, 2}], !

-{m#Bp)< 8< T,

where Eg. {7) is used and the regions are restricted to the upper-half
region.

As a consequeénce of the modified equations in Eq. {27), the un-
compensated terms at 8= ~(wr+0g) are now D(EZS)A and DBZ?’ withi= 1,2
i
- -(h-1j. The coupling coefficient from B to W resulting from these
terms can be written from Sqs. (27) and {10} as
h-1
rt - = (Z) -
Cwp = DBA(B (r+85)) + Z DB"L(G {(w+6g)) ,

1=

h-1
' = (6= (2) g
CWA—DAB(G- m+6g) + E DAis9—n‘+9E)
i=1

ap lvB(®: —-+e - 2) + vglb, —Z-e , 2}]

3w Sv .
+ ? CA1 [vplpyr 5 T U103, 2) + vplpy, = (ith%g, 2],
1—-1
which is a new coupling coefficient to ensure the continuity of the total '

pattern at 8= -{w+Bg) or w- 8. Adding this new coupling coefficient to
{1
Cwa in Eq. (7), the diffracted fields at W are modified as

20




(28) Dya = Cywalvalppe -0 + 8 nyll
H BE E 85— ,

Dwp = Cya [vBlpg 27-05-0.ny)]

where

t

= clt
Cwa CW)A+ CWA .

Using Eqs. (27) and (28), an approximated ''continuous” pattern
can be finally written from Eq. (24) as

(29) w®) = [v¥]y g+ Inji_é +Dap + Z DK% ]
=1

h-1
(1) 2
+ [Dpl + Dy, + ; DgzlyAB
i=1

+ [Dow + Dpwlvaw

h

+ 2 [(Ig))i}YA{ + “Ig))i}YBbVAB‘
izl

For typical dimensions of a corner reflector, Eq. 9 in general gives
excelient prediction of the radiation pattern. Examples are given in the
following section.

V. COMPUTED PATTERNS COMPARED WITH
MEASURED PATTZRNS OF HORN ANTENNAS

To illustrate the validity of the corner reflector as a model of the
pyramidal horn antenna fed by a waveguide supporting TEip; mode, Eq.
(29} is computed and compared with measured patterns. Figure 4 shows
the experimental set-up of a horn antenna in which the idealized modsl
is the corner reflector ASB used to derive Eqg. (29). The associated
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CALIBRATED ATTENUATOR -
AND DIODE DETECTOR

\

TE,, MODE

Fig, 4, The E-plane of a horn antenna,

waveguide and the calibrated attenuator and diode detector are not con-
sidered in pattern prediction.

Firsi, consider a horn antenna of pg. = 41.3 cm and 20, = 35° fed
by a waveguide propagating the TEjp mode at 9.8 gc. The horn length,
Pgs interms of wavelength is equal to {3.50 . The measured far-field
pattern is shown in Fig. 5. The pattern computed by Eq.{(29) is shown
displaced 5 db below the measured pattern. Comparison of two patterns
shows excellent agreement in the overall lobe structure. The smali
deviation of relative field intensity in the region 50° < 8< 80* is primarily
due to the approximation assumed in Eq. {23) that the second- and higher-
order images are negligible. The presence of the waveguide and the
associated attenuator and detector shown in Fig. 4 is responsible for the
interference in the region 80° < 6< 180" of the measured pattern. In the
process of computation, special care is required for the properly de-
fined regions of each term in Eq. {29). Attention iz alsc needed for
the boundaries 8= ¢, 90°, (90°-i5;), and {180°-6-) at which discontinu~
ities are eliminated by higher-order terms. For convenience, the pat-
tern computed by only first-order diffraction treated in Ref. 5 is plotted
displaced 5 db above the measured pattern. As mentioned earlier, the
discontinuities at 8= 90* and {180*-8g)are expected in the first-order

pattern.
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When the frequency iz increased corresponding to pp = 24.8)
for the same hormn; the three patterns are as shown in Fig. 6. The
same conclusiona drawn for Fig. 5 remain true, except that the inter-
ference from the waveguide and the associated structure Lecomes
larger because the physical size is larger in terms of wavelength.

In Fig. 7, three patterns are shown for a small horn antenna of

Pg = 5.61\ and 28 = 21.2°. Although the overall lobe structure is
still in good agreement with the measured pattern , a larger deviation
in intensity level {s obsexrved around € = 80° of the pattern by Eg. (29).
This disagreement results because the second-order image terms
negiected in Eq. (23) are not negligibly small for small horns. There-
fore, better patteras can be obtained for small horns by including the
second-order image terms and their subsequent effects on the total
pattexn .

The three examples presented above have demonstrated the
accuracy of Egq. (29) for pattern computations of typical horn antennas.
The accuracy of the experimental measurements is assumed to have 1 db
fluctuation when the intensity is around 40 db below the reference inten-
sity. In view of this, Eq. (29) is sufficient for horn antennas of typical
dimensions. Wken py and 8 become smaller, it is easily observed from
Fig. 7 that the second-order image terms in Eq. {15) should be in-
cluded to ensure good prediction around the region 8= 90° - 8,

Vi. RELATIVE BACK LEVELS

The radiation patterns, either measured or computed, always
have a back-lobe maximum at 8= 186°, even though this maximum value
is not necessarily the largest maximum in the region 180° - 85 < 8<180°.
In Fig. 6, for instance, the largest maximum vzlue in the region is at
176" of the rneasured pattern and at 8= 172.5° of the computed patterns,
using Eq. (29). This discrepancy results {rom the interference from the
experimental set up which is not considered in the id2alized reflector
model. The difference between the value at 8= 180° and that of the
largest maximum i{s generally small. Therefore, the radiation intensity
at 3= 180° can be taken as a representative value for back-lobe region.
L is algo observed that the radiation intensity in the region 90* < 6< 180°*
-BE is, in general, smaller than the mentioned representative value.

In EMC problems, it may be desirable to keep the pattern level in
the region 90° < 6« 180°® as low as possible. To predict a representative
iterfierence-intensity in this region, one can simply take the first-order
diffraction terms in Eq. (2) for approximate computation. Neglecting all
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higher-order terms; the radiation intensity at 0= 180* is given approxi-
mately by

[RURTNTSRC

uf) DE;?S (B=1mw) + D;_;Z,; (6= -m)

0

2 VB(PE, Zﬂ' - eE' 2) .
The radiation intensity at 8= 0° ig also approximated as

u{9}

Ya5(6=0) + D} (8=0) + DL (8=0)

Expl-jin Py coS BE] + 2 vplpp. 7- 6, 2).

where Egs. {19) and (2) are used. The back-to-front ratio can then be
obtained by pletting

20 10g Juml

o]

which has only two parameters, 8 and pp- For a horn antenna of fixed
angle 6g, the back-to-front ratio can be plotted as a function pg. Figure
8 shows seven curves for different hornh dimensions to demonstrate that
Fig. 8 can be used for approximate prediction of typical horn antennas,
Fig. § gives a set of measured data for 205= 35°, The data are taken
from nine complete patterns of the antenna. The accuracy of prediction
depends ou both the approximation in computation and the equipment used
in measurement. In general, it is expected that the larger the sizes of
antenna the better tne prediction.

It is interesting to compare the first minimum points in Fig. 8 to
the defined 9ptimum{6] horn lengths. The values of optimum horn lengths
are tabulzted in Fig. 8 and are found to b'e one half of that of P which
give the first minimum back-to-{ront ratios.

The sets of pp and 8 giving rise to the minima in the curves do
not necessarily imply that u(0) is maximam and that u(s} is minimum.
The reason for this ig the main lobe of pattern begins to bifurcate at the
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Fig., 9. Back-to-front ratio of 26 = 35°,

points where minimum back-to-front ratios occur, For a horn antenna
with 8, = 25°% and PE = 6.5\, 17N, 27\, 38\, and 48\, where minima
take place in Fig. 8, the main beam of the pattern is split into two,
four, six, eight, and ten lobes, respectively., As for EMC prcblems,
Fig. & can be used to evaluate approximately the representative back-
radiation intensity u{m} relative to front-radiation intensity u{d)., If

the horn antenna is large enough, it is generally safe ic expect that

the radiaticn intensity on the average in the region 90° < 8< 180°* -~ €5
is about & db lower than the representative value u{r) as shown in Figs,
8 and 9.

VII. CONCLUSIONS

The E-plane patterns, including far-sidelobes and backiobes, of
horn antennas has been formulated without employing aperture methods
and equivalence principles, Considering the various assumptions and
the mathematical difficulties inherent in aperture methods it {s shown
here that diffraction theory is more accurate and practical in analysing
rr.diation characteristics of typical horn antennas.,

The pattern of the proposed refiector model may, in theory, be
computed by Eq, (18) as accurately as desired. For reflectors of
typlcal dimensiona, the approximated pattern in Eq. {29) has been shown

i
i

¢
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in Sigs. 5,6, and 7 to be in excellent agreement with the measurad
patierns of norn antennas for which the reflector model is intended.
Cemparisons with the first-order patterns indicate that the improve-
ments of Eq. {29) are mairly in the far-sidelobes and backlobes. As

a consequence of the approximations made to obtain Eq. (29), the pat-
tern level tends to deviate more and more in the region arocund 6=90°

- 8¢, when horn dimensions become smaller. Figure 7 shows that the
second-order image terms in Eq, {15) can no longer be assumed negli-
gible for small horns. In conclusion, Eq. (29) is generally sufificient
to predict patterns cf typical horn artennas, If higher accuracy is
dcsired, the higher-order terms neglected in Eq. {29} may be included
for computation.

The curves of backlobe levels i Figs. 8 and 9 are approximated
by the first-order diffraction terma. More accurate prediction of back-
to-front raties should include ali higher-order terms which have signifi-
cant contribation in the back-lobe region.
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APPENDIX A
REVIEW OF DIFFRACTION THEORY

The two~dimensional problem of the eleciromagnetic field in
the neighborhood of a conducting wedge illuminated by a uniform plane
wave was first solved by Sommerfeld[7]. The solution for a conducting
half-plane (zero wedge angle) was formulated in terms of the Fresnel
integral. Subsequently, Pauli{8] formulated the solution for wedges
of arbitrary angles in an asymptotic series in which the dominant term
is the Fresnel integral. The higher-order terms in Pauli's solution

become identically zerc for zero wedge angle. Therefore, Pzuli's
solution is used here for the general case.

Figure 10a shows the geometry of the wedge used by Pauli to
formulate the solution of field intensity at P{r, )} caused by plane-wave
illumination. By reciprocity, if the same wedge of a perfectly conduct-
ing surface is illuminated by s uniform cylindrical wave from S shown

in Fig. 10b, the far-field intensity can be written from Pauli’s solution
as

{30) v

i

vip, ¢+- n) t vig, ¢ . n),

+ -
v i+ Vv

"3
=3 » and
9 i upo an

2

n=2--_2

’
k13

where the terms vi represent the incident and the reflected fields,

respectively. The sum (v? + v-) applies when$ is a magnetic line source.
and the difference (vt - v~) applies if S is an electric line source. The
incident and the reflected fields ure composed cof gzometrical optics

terms and diffracted terms, as,

viz (oMt + VE .
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{a) Hluminated by a uniform plane wave
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(b} Illluminated by uniform cylincrical wave

Fig. 10. Geometry of a wedge.
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The geometrical optics terms are given by

(31) w*)t = v¥{p, o1, n)

{EXPU}CP cos(ot + 2rnN)], -w< ¥ + 2waN< x,
‘.,0 otherwise

N=O,*1.*2-"-

4

where the periodicity of the functions {s seen to be 2nw,

The diffracted
terms are given by

(32) vx_:,i = vg(ps ¢%, n)
d:i. +
F_‘xP(j-Z-) (3&1%) Z’cos-‘z—iExp {(jkp cos $*) syt
== _— .
I;." n - i' 5 dr
cos ;; - con—!';

+ (Higher-order terms
negiigible for large kp

and

a=1fcon¢f.

As (akp ) approaches infinity, i,e., as the line source S recedes to ghe
far-zone, the soluticns in Eq. (32) can be written

I 4
Exp {-3( ry +kp)] sin ; -‘

,{Ew kp

(33) vglp, ¢¥,u) =

t
Ln(COI -:; - cos Ln_ ) j

For N=0 in Eg. (31), the geometrical optics terms have discontin-

uities at the shadow boundary (¢T = %), and the reflection boundary (¢~ =),
At these boundaries, the diffracted terms are given as

33
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-
3

t s lim{n ~¢)

N € —~0
(34) vglaofzmn) = { | ) :
+ 5 Exp.(-jkp) + - = - &% = lim (w+¢€)

€ =0

Exp.(-jkp} + - - - ¢

| b

.

where the higher-order terms are negligible for large {kp) are not
presented, The solutions are essentiai in ensuring continuity at the
boundaries. Since we intentionally make the geometrical optics terms
in Eq, (31) defined at the boundaries, & = +m, the first equation of

Eq. {34} should be used to obtain the field intensities a1 the boundaries.
The total far-field of the wedge illuminated by a uniform cylindrical
wave shown in Fig, 10b can now be obtained by using Eqs. {31), {32},
and {34) as

(35) ulp, o, n) = [(v)F + Va+] #{vH -+ vg 1,

where the reflection terms disappear if the wedge is illuminated by the

source with¢ = 0, If the source is an electric line element, the value
.5, : .

of u{p, ¢, n) is identically zero for xpo =0,

The solutions in Eq. {35) are valid only in evaluating the far-field
intensity which {s the main concern of present problem, The diffracted
near-field intensities of 2 conducting half-plane, i.e., n =2, have been
solved by Nomuza[ 9] and used by Ohba for dipole source illumination.
Since thig aolution is in a general form, it can easily serve to illustrate
principles of reciprocity. To generalize the solution further, the dif-
fracted near-fields of a wedge illuminated by a line source have been
written by Dybdal{10] in a form as follows:

, -+ Exp [-jk(r+g-b)] %
(36) vir, g, %, n) = {vpb.o®, n)]
e r—;——r 5 B
= =P
b rip '

where the v tesms are given in Eq. {32). I the {field point is in the
far-zone, v{r, p,¢*, n)is reduced to

i




V(I', P ‘.btg n) = E—XE—E-:J'-}—(—Ij— [VB(P»¢‘!3 n)} »

Jxr
i
which, with the common factor r? Exp|-jkr] removed, is identical to

Eq. {32}, If the source point recedes to the far-zone, the solutions in
Eq. (36) are reduced to

v{r, P ¢t, n} = g%:‘ﬁfﬂl {VB(rt q)*o n)] s

which, with the common factor p "2 Exp|[-jkp] removed, are identical
to the near-field solutions of a wedge illuminated by a uniform plane

wave,
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APPENDIX B
FAR-FIELD WAVES FROM THE IMAGES
OF LINE SOURCES

Consider line sources parallel to perfectly conducting plane
The problem in this Appendix is to obtain the far-field intensity

walls,
The problem is a two-dimenaional

of the image waves from the walls,
one and the line sources can be either magnetic or electric line sources,

First, a directional line source is shown at point S in Fig. 11,
If a semi-infinite conducting wall is placed with an angle 8, with respect

to the horizontal reference axis, the image of the line source is formed
The line scurce radiates a directional cylindrical wave to the

at point 1.

HALF-PLANE WALL

Fig. 11, Geometry of a line source and its image.

far-field and it is designated as v{f). In the presence of the wall, v(8)
The reflected

is reflected by the wall in the region -{n +6,)< 6L - «n/2.
wave is calied the image wave from point 1 and can be described by

ki1
3 - 26, 8< ~(r-8) ,

{37) 1(8) = v (8) = v(-26,-9),

where the superscript minus sign implies the reflection of v{8), The
total far-field pattern can then be obtained by superposition cf the two

waves 28




(38) u(6)

]

vivj + v‘(-ZOo -8 Ysi

and
ysy = Expl-jkpsin (84 €,)] ,

where yg, is the local phase-factor of the image referred to point S
and p i8 the distance between the image and the gource as shown in
Fig. ll. This result is obtained by removing the common factor
R-% Exp [-jkR], with R referred to S, The plus sign applies for a
magnetic ling source, while the minus sign should be used for an
electric line source.

Next, a corner reflector of 29, is shown in Fig. 12a. Let there
be only one line socurce v{f) at A, In the region -{n-86,)< 6< -%/2, the
rays ivom A are reflected by the lower wall, Only rays in the ray -1
zone (from image -1) are directly reflected to the far-field, The rays
in ray -2 2one are reflected twice while those in ray -3 zone are re-
flected three times inside the reflector, Consequently, three image
waves are formed in three distinct regions. The first image wave can
be writter similar to Eq. {37) from Flg, 12a as

(39) v1~(6) = v(-26,-6) , % - 20, € e_<_.:;_1 -6,

which is obtained by replacing the 8 of v(6} by (-26, - 68}, The second
image is formed in the upper wall, This image wave can be obiained
by replacing the 6 of v;~(€) by (426, -~ 6) as

h:4

(40) v2~(6) = v(-48, + 6}, - (5 -30) 202 - (% - 28)).

Again replacing the € of the above expression by {-26; - 8), the third
image wave can be obtained as

™
vy~ (8) = v(-68; - 8, > - 46, <0< m- 76,

This procsas can be used for any number of images. The number of
images is equal to the numbe. of ray zcones determined by the highest
integer h such that h< =/28,, Construction of the images in Fig. 12a can
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3.

{b) Images of lower wall due to two symmetrical line sources

T

. L
Fig. 12. Geomeiry of a corner reflector 3> 28,> 7
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be extended to conclude that all the odd-numbered images are formed
in the lower wall, while the even-numbered images are in the upper
wall. In general, the image waves can be written

. T T .

v(-2190 - 6) 3 -litl)e < GS‘:‘Z - i, for i odd
(41) vi~(6) = T -
v(-2i6, + 6) -[-Z-(m)eo] >8> -[3-i8,] for i even,

i=1,2,3- -~ (h‘l) .

If the ratio of m to 28, is not exactly an integer, the valid region of the
last image should be modified as

v(-2h6,-0) = -(h+1)6, < B w-(2ht1)8;,  h odd
(42) vR™(9) =

v(-2h8,+6) '{§ ~(h+1)6,] > 8> [ -(2h+1)8y] h even .
L.

The value of 28, in Fig, 12 is larger than v/4 but smaller than »/2.
Therefore h is equal to 3 and the last image is defined by Eg. (42)
for h odd,

Figure 12b shows two symmetrical line sources at A and B from
which far-field waves v(t) and v(-8), respectively, are radiated. The
images of the source at A are identical to those in Fig, 12, Because
of the symmetrical properties of the assumed line sources and the geo-
metry of the reflector, the images resulting from the source at B are
symmetrical to those of A, Consequently, equal numbers of symmetri-
cal images are formed in both walls of ¢the reflector. Making use of this
symmetry, the image wave# excited by v{-8) from B can be obtained
similar to Eq, (41) as

) v(-2i8,48) -{g-(m)eo] > e_>_.,[.g_-{e°] i odd
(43) vi (-8) =
v{-2i6,-6) F -(i+1)8, < < = -1, { even,

i.'-' 1, 2. 3—"" (h"l) .

In case the ratio # to 28, is not an integer, the last image wave has
its defined region as in Eq. {42) by interchanging h odd and h even,

g




Yo,

Comparison of Egs, {41) to (43} indicates that all image waves
from the lower wall are combinations of v{ (8 with { odd and v{ (-9)
with i even. The other set of combinations gives the image waves
from the upper wall. To summarize, the image waves irom both walls
of the reflecto: «r esignated by (Iy}; and (Iy){ as follows:

(44) (IL); = v=(8) = v(-2i6,-6) , -1-2'--.(i+1)6°$ 65%480, lower wall;
Lif 5 T
(Iyli = v (-8) = v(-2i6,+9) -[-2—-(14-1)60] > 93-{%-180). upper wall;

i=l’2)3""" ha
For the ratio of m to 26, not an integer, modifications for i = h are

(15) {IL)n = v(-2h8,-6), .;l-l_hﬂ)eoi 0< 7 ~{2h+1)8y;

and

(1y)y, = v{-2h8;+6}, -[g-(hﬂ)@o]z 8> -[n-(2u+1)8,] .

In Fig. 12b, three images in the lower wall are shown, Their far-rield
intensities can be obtained by setting h = 3 in Egs. (44} and {45),

Because of symmetry, only the upper-half region 0 < 6< = reeds
to be considered for tne radiation pattern of the reflector antenna., In
this region, the contributions are from the sources at A and B and the
images in the lewer wall, Contributions from the last image in the
upper wall are possible, if the ratic of v to 28, i3 not an integer. Super-
pesition of all these contributions gives the total far-field u{f) as

h

, > : (; i .
(46) ul®) = vi6 + [v(-d]yp t ) (F1) [v(-2105-8)]y o
i=l

h
+(#1) V(20849 y 45 ypp »

A= . = = aa et e - —




where (‘gl)11 preceding the image terms 2 e used for magnaetic line sources
and (-1) are used for electric line sources, The phase factors are
introduced by taking A as phase-reference:

(47) yaB = Exp [-jkp, sin 6],
Ya; © Exp {"‘jkpi sin (ieo+e)] '
vyap = Exp [-jkpy, sin(h8,-6)] ,

P, = AB, and
Pi = Pi_1 cos 8, + p, cos (if;),
The above expressions can be obtained by counsidering the geometry of

Fig. 12, It is noted that each term in Egqs. (45) and (47} {s set zero
outside its defined region.
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APPENDIX C
COUPLING COEFFICIENTS OF THE FOUR WEDGES
OF THE ANTENNA MODEL

The primary scurce at § in Fig, 1 illuminates wedges A and B,
The resulting diffractions are denoter as first-order. When the {first-
aerder-induced line source at A illuminates B, W, and S, the diffractions
are designated as second-order. Likewise, A, W, and S are illuminated
by the first-order-induced source at B. Therefore, the lowest order of
diffxractions for W andé S in our present problem is second-order.

Physical significance of the coupﬁng coefficients in Eq. {17) can
be more clearly stated by taking ng' as example, Wedge B is
{lluminated by the {m=2)'"-induced sources at A, W, S, and (h-1) images.
There are then (h+2)} terms of (m-l)th-order diffraction waves induced
at wedge B, Combination of these {h+2) terms forms a directional
eyiindrical wave radiated from B. In the direction of wedge A, 8=

+ 7/2, the illumination intensity is therefore a2 combination of (h+2)

terms in this direction, Writing ocut these terms yields

(m-1)  (m-2) {m-2) {m-2)
CaB =Cpa “aBa*Csw CaBw*Cms Cass

h-1
)
. CpiCaBi’
{21

where the double subscripts denote (m-Z)ﬂLorder illuminations from
various sources to B, The triple subscript terms denote coupling co-
efficients from varicus scurces through B tc A, Similarly, for other
wedges and the images, symmetry property can be used to obtain

1) (m-2) {m-2 -2
(48} Cgi Vs Can Cpap*Caw )CBAW + Cknsa )CBAS

-1
% {m-2) (m-1)
Lx Cai Cgai1=Cas
i=




[

{m-1) {m-2) (m-2) (m-~2)

{cont)
h-i
+ E {m-2} (m-1)
k=1
"1 .“2 Lead -
c(m ) C(m )C + c:(m Z) {m-2)

AW =Cwa CawatCyp Caws~ Cpw

(m-1) _(m-2) (m-2) . _ _(m-2)
Cas =Cspa ©CasatCsp Casp=Cgps

{m-1) {m-2) {m-2) Am-2}
Cwa =Chs Cwan*Caw CwawtCas Cwas

h-1
{m-2) {m-1)
+ =
E Cai CWA,; =Cws *
i=1

{m-1} (m-2) {m-2} {m-2)
sa “Cap CsatCAW Cgaw ¥ Cas  Cgas

R '}_“ (m-2) tm-1)
‘ CAi “SAL T Css '

i=l

m=3,4g5‘“"‘w.

Equation {48) applies only for m > 3. For m = 1, the coupling coefficients
are of zero-order and are not defined for our problem except for direct
illumination from the primasry source at S. For m = 2, the coupling coef-
ficients are of first-ovder and are given in Formulation of Solution as
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(49) Cpa=C,p "~ "BQ’E' e)

C(‘;,)A = (l)B = VB(PE' Zﬂ} >
) = B = vpleg: O

and

cll=cl) = vB(pE.. {--(iu;eo). i=1,2,-- (a-1}.

‘ (m-l) (m-l) {m-1} _(m-1}
Tho C 4w » Cpy » and Cpg ' Cpg

because thers are no first-order induced sources at W and S,
Eq. (48) can be written as

(.) = ) 1) ¢ = (3
(50) Cha=C,5 Cpan? Z ChiCBai*Can
hei
S ) {1} (2}
Ca1=Cap Cain? Z Caik Caik = gy °

k=1

cla (1) 1) ~ i3
Caw = Cwa Cawa* Sws Caws = “Bw °

cll - cL) Casa + CLL Cagn = i,

h-1
(2) @ 1 (2)
wA=Can Swant / Ca; Cwar=Cws:
i=1
and
h-1

(2} 1
Ga = cl) Csap + 12 cfl) csag= g

where the triple-subscript coupling coefficients can be obtainad from

the variable terms in Egq. (17) as

are equal to zero, form= 2,

Form= 3,




.

(51)

3n

v 4
Cpap: Cwap: CsaB = VB(b' 2t 6) t vplb, 5 -26, + 9)»

- ki1 4
at 0= - =, w6, -(m-8);

CBAW, CWAW' CSAW = VB(pE’ﬂ-‘rGO - 8) R

- ™
at 0= -'Z_l ™+ 600 “(ﬁ° 80);

¥ =
BAS: CwAs: CSAS = VB(pE,TKﬂ eo + e) s

w .
at 8= -5, 8y ~(r=8,};

_ T 3x
Cpai* Cwai’ Csai = "B("i’? *‘eo*'e) + VB(Pi' 5 -(i42)8,+ 9) '

™
at 6= -E, n+ 90; “(”“80) H

— T \ { 3= .
CaiB = vB(b, -2--3190-5 + Vgib; =5 - 2(1+l)8° - 9 .

at 6= G - i8,) ;

Cajw = VBIPE m#(2i41)% +8) , at0= 2 -i0;

Cass = Vplppr ™-(2i41)8,-9) , at 8= .;. -1, ;

= vnle T & 3 .
at 8 =-§ - 16,
CAWA = B{PE' 8-6,, uw) at8=16,;

C = _
AWB = VB(pE, 27 -08- 8, ny}at8=98 .

anpae vou e

i
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51 - '
gcozzt) Casa ValPr.0,+6), atos= 8,;

and

at 8= ﬂ.).

B T

Casp = vplpE: 8, - 9,

T

Equations {49), (50}, and {51) cxr then be ye»2 to solve any order of
coupling coefficients from Eq. (48).
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APPENDIX D
THE SCATRAN SOURCE PROGRAMS FOR
NUMERICAL COMPUTATION BY IEM 7094

The source programs for Eq. (29} and the associated suhroutine
s vp are presented here for reference. The input data required are the
horn length pg in terms of wavelength and the angle 6g in degrees,

It is noted that the notations Q, R, rx, and G in the programs
correspond to A,B, PE and 8, respectively, in Fig. 1,
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*LRRS
HO1

S48%4

nO2

HO24A

H028

SESHE

INTEGERS (M)~
FLOATING (NS+NW)=
COMPLEX (CORQ+CURI+SCURI+CW3B2+CH0] «SCHG] )~
COMPEX ({YReXRSBT3IP )=
COMPLEX (CWQsCORICUXGS+XGRI XU XRS+ XRQ1XR ¢ XRSP ) =
COMPLEX (XROPsXRP +XWQe XUR e XQSBe YOS+ YUReYQosURUT ) =
COMPLEX (COMZeT1eT2¢TI0~
COMPLEX (CEXPLe)~
DIMENSION (R(200)+CO(200)1e X0 {2001+ XR(200) e XRP{(2C0) )=
DIMENSION (XQS5B{200).YGi200))~
LITERALS (Pl ¢3c¢1a159265+RAD+s01T45329+P[2+56¢2831053)-
DIMENSION (YR{200)e¢XRSL(200))~
LITERALS (COMZ¢TaeleDe:PIOH1c5707043)~
INPUT -

READ INPUT «8¢ (NS )~
GO THROUGH {(HZ23)«INsDel ¢ INgL eNCS=~
READ INPUT +14FO) « {RE¢ALPME )~
CALCULATION OF CONSTANTS -

ALR2RAD®ALPHE -~
HePl /12 6ALR Y=

PROVIDED (HeEoPlAl24%ALR) o HZH~}~

NS=(2+8ALR/P] -
NWz{2e=NS5)=
R=2+#RERXSINe tALR) -

BER~

DO THROUGH (HOZ2)elaxjeies]loelEett~
RUIIzR(I~1128C0Se (tALRI+RELOSL { | #ALR) =

TRANSFER (HO2) PROVIGED (leGEeitt)-

CALL SUBROUTINE (RYB«UVO)aVB (P I2+REsPIOH= (][4} ) BALRe2s )~
CQL1I1=RVB+e | sUVB~

CONTINUE ~

CALL SUBROUTINE (RVZ:UVB)IaVB.(PI2¢8eP1 -2 %A1 Re20 )~
CORQzRYB+e i s UVH~-

CALL SUBROUTINE (RVB«UVHBI=VBe(P]2¢8s0a2208 )~
CGRA=CORA+ {RVB+e I eUVB L~

CALL SUBROUTINE (RV3eUVBI=VBe(PIZe¢REPIOH-ALReZe )~
COR1zRVB4e | s UV~
SCORI=COMZ-

D0 THROUGH (1nOZAjIrIxzH=is—1e]l eGEel~

CALL SUBROUTINE (RVB1+UVBL1IIVEe (PI2¢R{I)¢IRALRe20)~

CALL SUBROUTINE (RVBeUVB):=VUHe (PIZ2sR{11+P1=(]42)18 % Re2e )=
RYB1=RvBi +RVB-
uvel zuyvBi+uvie-

CALL SUBROUTINE (RVB+UVE)}2VB4(PIZ2«RE+PIOH-{]¢; 1 BALRe2s )~
SCORI=SCOGRI+(RVBI 41 UVBL1 ¥ {RVB+elouvd)-
COR={CORI+SCORIIZ/((1ete]le(e)-CARAG) -

CALL SUBROUTINE (RVBeUVB}IaVB4(PI2¢8e3e#P10MIALR 20}~
CWQZ23RYB4e l e UVE-~

CALL SUBROUTINE (RUBWWUVB)zV3e{P{2:83+5+ ¥ 0H-ALReZs )~
CWG2={CWAZ+{RVE++s 1 eUVB I }MCOR~

CALL SUBROUTINE (RVB«UVHI=VASIPIZ2«REP 12003~
CWGlzRVB4el s UVE-

SCWQl2COMZ-

DO THROUGH (MO28)elzMalo~ijsle3Eel-

CALL SUBROUTINE (RVB1sUVB]I 1aVBetPI2+R7 1134 8PIOHS {141 )RALR
t2e )=

CALL. SUBROUTINE (RVBeUVB )aVBe (PI2¢R(1105+2PI0N=({ 19 10ALR2
* )~
RVBi1=RvVB14+RvVB-

UVAixzyvBleuvB-~

CalLL SUBROQUTINE (RVB+UVB)aVBe(PIZ2+REWPIOH=-{14] }1PALR¢Zs )~
SCWOIASCWQI+{RVBee ] +UVBI® AVt el euvBl ¥~
CwQalwQl+CWGZ+S5Cwhi-~
CALCULATION OF VARIAEBLES -

A2

o

I




an,

Vo

DO THROUGH (122)+K20esl+KeiEe 180~

THETA=K#RAD-

CALL SUBROUTINE (RVB+UVB)=VB{PI2+RE+PI=ALRITHETAC2s )=
¥QS=RVE8+s | s VB~

CALL SUBROUTINE (RVB«UVB)aVBe {PIZ2+R¢PICH+THETA 20}~
XGRFRAVB+e l s UVB~

CALL SUBROUTINE (RVB+UYBIaVB e (PI2:Re3e#PIOH=2FALR+THETA2
* )=

XQRzXQR+{RVB+eleUVB )=
YOSsCEXPL2(Qete |l e =P | 20REFCOS+ ({THETA~ALR) }

CTORICEXPLa{Dete ls=~PI2#R*SINs(THETA) )}~

00 THROUGH (HO3)slsH=]ls=10]eGEel~

CALL SUBROUTINE (RVBsUVYBI=VBetPIZ2«R{I ) +PIOHAIBALRITHET A2
Yo

XQ{1)=sRVB+e e UV~

CALL SUBROUTINE (RYBeUVBIZVIe(FPI2:RII 163 P IOH-{ | +2)RALRST
HETA2e )~

HO3 XQ{1)=XGLI I+ (RVSB+eleUVB)=-

Sele=

PROVIDED (THETAWGeALR) 5506~

TRANSFER {HOS) PROVIDED (THETAeGePIOH)~

CALL SUBROUTINE (RVB«UVB)I=VBe(PI2+RE«FPI=ALR-THETA+Z2e )~
XRS=ERVEB4e jaUVH~

CALL. SUBROUTINE (RVBeUVE )}zVBe (PIZ¢R¢PION=~THETA e )—
XRG=RVEB4e l e UVRB-

CALL SUBROUTINE (RVBeUVBIzVEB+ (PI2+¢Re3e#PJOH=2 +RALR=THETA+2
*)-

XRG=XRQG+ (RVB+eleUVB )=

00 THROUGH (MO&)slzH=ls—=1e¢leGEe]l~

CALL SUBROUTINE (RVBeUVB)IzVBIPI2¢R{1)+PIOH+I#ALR~-THETA20
-

XR{1l}sRVBé+a ]l s UVE~

CALL SUBROUTINE (RVB+UVB)}aVB (PI2+R{1 13 #PI0OH~{ 142 )2ALR~T

HETA42¢ )~

HOos XR{1 12 XR{ 11+ (RVE+e leUVE) =~

TRANSFER (HO7)=
HOS XRSaCOMZ-

XRG=COMZ~

DO THROUGH (HOG6)elciH=1le—~1sleGEel~
HOG XR11)=COMZ~
HOT TRANSFER (HOB) PROVIDEDC (THETAeL eALR)=~

CALL SUBROUTINE (RVB«UVEI=VBs (PI2+RE¢THETA=ALRs NN} =
XWGO2RYEB4+s { s UVB~

CALL SUBROUTINE (RVB«UVB)IsYVBe (PI2+RE+PIZ2-THETA-ALRINW)} =
XWR=RVEB+e l «UVB~

TRANSFER {(H09)~

Ho8 XWQ=LOMZ~
XUR=COMZ~
HO9 TRANSFER (iH11) PROVIDED (KelL»180¢=-ALPHE )~

CALL SUBROUTINE (RVB+UVB)EVH {PI2/REs3e TP ~ALR-THETA 20 §=
XRSPERVEB+4e ] sUVB=~

CALL SUBRGUTINE (RVB+UVB)asVR(P12uR+S¢#POH~-THETA224 )~
XROPsRVB+s | o1 VB~

CALL SUBROUTINE (RVB+UVB )IzVB4{PI2eRe7e#PIUr=2#ALR-THETA 2
¢)=

XRGP=XRAP+ {RVB4e l sUVB) -

DO THROUGH {HiOjelaHalo~leloGEei~

CALL SUBROUTINE (RVBeUVB)IZSVB o {PIZ2iR{11+5«#P 1O+ [ AL R-THETA
2 2e 1~

XRP (] )=RVB4+e I ¢UVS =

CALL SUBROUTINE RVB«UVB)ISVD(PIZ2:R{TIe T #PION={ ] +2)2ALR-T
HETA2¢ )~

H10 XRPt]IsXRP i)+ (RVBrelUVE -
TRANHSFER (Hi3)=
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H1l ARSPECOMT -
XRQP=COMZ -
DO THROUGH (r1Z2)siaNele=te{oGEel~

Hi2 XRP {1 y=2CONZ-
- Hi3 DO THROUGH (HiZ)sljan=le=ilvl]eGEe}l-
: TRANSFER (KH14) PROVIDED (XKel s$0o=("'1+} )BALPHE OReKsGe90e~]
§ #ALPHE )=
YGUII IBCEXPL e (Os+e s (~PIZRIIIINSINI{IIRALR4THETA) ) } =
E CALL SUBROUTINE (RVB«UVB)IZVBo (FIZREPI={2%]14] JRALR~-THETA
388 )=
XQSB(11)1aRVB+e j s UVB.

TRANSFER (#H15)~

Hia YQLl] 5=COMZ~
XQ58¢11)sCOMZ~ ¥
HiS CONTINUE =~

TRANSFER (Hi6) PROVIDED (Kol e (2%H4 1 FALPHE=1804s0ReXsGe (M4
} 1RALPHE~F0a )=
YR{MIZCEXPLe (Oad ol s (~PI2BRIHIFSINe L {H+] JHALRSTHETA) § )=

CALL SUBROQUTINE (RVBeUVBIaVB (PIZIRESPI-{(2%H+] JHALR+THETA
2e)=
XRSB{H)IaRVBrs i s UVB=~

TRANSFER (119~

Hié XRSB(H)=2COMZ~
YRi{HIsCOMZI~
Hi9 CONTINUE =

TRANSFER (Hi9A) PROVIDED (KelLeZ0a~{Hel )#ALPIE ¢DOR oK eGc 800~
{2#H4 ] Y RALPHE ) -
CALL SUBROUTINE (RVBIUVSITVEGIPIZIRE«PI~{2%H+ 1 yFALR-THETA.
20}~
XQSB{H)I=RVB+s | s UVB~
YU(HIsCEXPLe (Oretela({=PI2AR(H)IASINt {H*] ) WALR-THETA ) )=
TRANSFER (H1I9U)-
HiOA XQS8tH)IsCOMZ~
YUiH)aCOMZ~
H198 CONTINUE -~
C  Saann CALCULATION OF OQUTRU! YALUES -
UR#SHYQS+XCS+ (XRS+XRSP ) #¥YOR-
TIP=2COMI~
T1alOMZ-
T23COM2Z~
T3sLOMZ~
D0 THROUGH (H20)slsrt=je=]eloGEel~
Ti3T1+COLIYRXGL] )~
H20 Y2aT24CAt 1IN {XR{ I ILXRP (] ) )=
DO THROUGY. (HZ2lislzHe=leloGEs}~
TIPsTIAP+XCSS L 12YQ( )~
24 T3zTI+XRSBI1I#YR(] )=
UTaURTCWAR I XWQ+XUR  BYGS+COREXURA TI+ {CORH (IXROLXROP 5+ T2 ) #YOR+
TI+TIP-
PROVIDED (THETASNEDe)s TRANSFER (H21A7-
URZACFABSe LURE~
UTZsCFABSe {UT 3~
C nexes PRINT=0UT OF VARIAGLES -
IALPHE= 1 Qe YALPHE ~
IRE® 104 #*RE~
PUNCH CARDS sHFOSs (IALPHE + JIRE )=~
HSiA CONTINUE -
FUTT20.%FLOGI e { s ABSUT/UTZ )~
FURZ20+8FLOGl e { s ABS o UR/URZ )~
IFUYIRK)IZ{FUT 4900 }#20s~ ;
IFURIKIZ(FUR+30+ 18200~
KK{KI28e56660H78K~
DIMENSION (iFUTI1IB1)eiFURIIBLIIeKK(1B8]) )=
H22 CONTINUE -~

I
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H23 PUNCH CARDS W OTs L{RKKCE)eIFUTII o150l EniBO))~

F 1O} (2F10+45) -
¥ HFOS {2(2X+s13)) =
F HFO7 {5814)-

CALL SUBROUTINE ()SEMDJOBe( )~ ,
END FPROGRAM (MO} )= 5
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*

#&%  SCATRAN

AL TER

RUVBO001
SUBROUTINE {RVB W UVB ) 2VBo (FK ARG s ANGLE - FN)

PROVIDED(oAdS.(oABSoANGLi~3o14159265}.LE;.U001)vTRANSFER 10
CALTER) -

CONST = 3414159265/FN -

COSANG = COSe¢{ANGLE} -

X = FKRARGH#{ ] 4+COSANG} -

CALL FUNCTION (C)=RFRESNe (X} ~

CALL FUNCTION (S)=UFRESNe (¥) -

RCOEFF = COSe (FK®ARG#COSAN'-) = . }
UCOEFF = SINe (FKHARG#COSANGG -

RIEST = +S5~C/2¢=5/2¢ -

UREST = S/24-Cr/2¢ =

COEF=Z([+4/FNIRSING (CONST) #2.%eABS et COS« {ANGLE/2¢ ) ) /{COSe (CO *
NST)=COSe (ANGLE/FN)) -

RVB=COEF % (RCOEFFR*IREST-UCOEFF $UREST ) -

UVB=COEF * {RCOEFF#UREST+UCOEFF #RREST ) -

NCRMAL EXIT -

RVB=~e5#00S¢ (FKREARG } =

UVB=+45#S INe IFKR#ARG ) -

NORMAL EXIT -

END SUBPROGRAM -

END PROGRAM -

*%%  STATEMENT LISTING

*#4%  SCATRAN

LGCOP

ASYMP

LOOP

LO0P2

DONE

FRESOG00]
FUNCTION (C) = RFRESNe (X) -

PROVIDED (XeGal0ads TRANSFER TO {A>YMP) -

H = S0RT«(2e%#X-"34141%927) -~

C =z -

PROVIDED (e ABSe (H) 2 E«e 00001 )+ TRANSFER TO (DONE) -

D0 THROUGH (LOOP).« L=1+1sPROVIDED {2ABSe (H)eGee 00001 ) -
H:Hi¢((BQ-QO'L)’X’XS/((QQ’L+IO)'(ZO‘L)‘(ZG*L“l.))) -
C=C+H -

CONTINVE ~

TRANSFER TO (DONE) -

Sl = le -

AS] = 81 -

STEMP] = +ABS«(S1) -

DG THROUGH (L OUP] je L=2+2.0Q0VIDED {oADSe ({351 )eGee U001 sANDST
EMP1/2ABSe{S11+6Eele) =

STEMP] = ocABS«(S1y -

51 = Sl‘((-lo“ZI*L‘IQ)*‘20.L-30’)/:41*x.x}) -

AS1 = AS] + St -

CONT INUE -
S2 = eS/X =
AS52 = 52 ~

STEMPZ = +ABS.(S2) -

DO THROUGH {LLO0P2)+s L3 _+PRGVIDED (oﬂBS.(SZ).G..OOO!.‘ND.SY
EMP2/eABSe (S234GCale) ~

STEMP2 = +ABS«{52) ~

52 = SZ*(("!u'fZO‘L“3O)‘(ZOQL‘IO)QI(Qw'X*X)) -

ASZ2 = AS2 + 52 -~

CONTINUE -

C = 5 + (Slﬂa(XI/SQQTs(502833853*x33fA51 + {COS+{X)/SURTs {6
«2831854%X3)14AS2 -

NORMAL EXIT -

END SUBSPRROGRAM -

END PROGR2R .

*R%  STATEMENT LISTING
8% SCATRAN

UFREDDO1 ;
FUNCTION ¢S) = UFRESNe (X3 -

PROVIDED (XeGei1Q0e)e TRANSFER 10 {ADYMP) - :
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h

LoopP

ASYMP

LOOP}

LooP2

] SURT«{2e%X/361419927)1%X/ 3 =~

§ = H =

DO THROUGH (LOOP)s L=1+1+PROVIDED (oAU0Se (H)eGeWs0BI001) ~

H o= HE(((1a=Qe L I EXRX )/ { (G RL+32 )8 {2a% +1e) (2% ))) =

S =5 +H -

CONTINUE -~

TRANSFER TO (DONEj -

St z le -

ASi = S1 -

STENMP] = +ABS.(S1) =

D0 THROUGH (LOOPL ) L=2+2¢PROVIDED (sA3Se(51)sGesD00] ¢ANDSST
EMP1/6ABSe(S]11eGEel o) -

STEMP]1 = «¢ABSe(S1) -~

St £ SIR{{ =] oW (2eWL~1o)R{2e% =30} ) {Le®X®¥X)} -

ASt = AS1 + St -

CONTINUE -~

G2 T o5/X -

AS2 = 852 -

STEMPZ = +ABS.1S2) -~

DO THROUGH (LOOPZ2)e LxI+2+PROVIDED (eABSe(S2)e¢G¢0003 «ANDe ST
EMP2/cABSe (S23eGEsle) -

STEMP2 = +ABS({S52) -~

S2 2 S2R({=J¢F(2e®L =35 )18 (2% =10} )/ (SeWXWX}} -

AS2 = AS2 + 52 -~

CONTINUE -

S = o5 = (COSe(X)/SURT (528218544 X ) 1*¥AS1 ~ (SIN (X3} /50RTa (S
e2B318S4#X)JRASZ2 -

NCRMAL EXIT -

END SUBPROGRAM -

END PROGRAM -
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